S . Y- g
 AD-A242 274 IMENTATION PAGE __ [Sikiiow {

i MENTATONPAGE __ TEEm.

sports, 1215 Jefferson Davis Liighway, Sulte 1204, Arfingion, VA 22202-4302, and to the Office of informnation and Reguiatory Alfairs, Office of

4

7. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Final: 29 Nov 1990 to 01.Jun 1993
(4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

R.R. Software, Inc., Janus/Ada 2.2.0 PHAR Lab/DOS, IBM PS/2, MOD. 80 Phar
Lap/DOS 3.3 (Host & Target), 901120W11088

(6. AUTHOR(S)
Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRE E§)

HWORVING ORGANIZATION
" REPORT NUMBER

Ada Validation Facility, Language Control Facility ASD/SCEL
Bldg. 676, Rm 135 } AVF-VSR-436-0891
| Wright-Patterson AFB, Dayton, OH 45433
) YOI Y ] ) 70. SPONSORING/MONITORING AGENCY
Ada Joint Program Office REPORT NUMBER

United States Department of Defense
.| Pentagon, Rm 3E114
Washington, D.C. 20301-3081

11, SUPPLEMENTARY NOTES

Lrvare aveldolete 4o deoeby e, por M
M\»&ugo AD A Mfar e i hetr
m a. ] AV 12b. DISTRIBUTION CODE |

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
R.R. Software, Inc., Janus/Ada 2:2.0 PHAR Lap/DOS, Wright-Patterson AFB, OH, IBM PS/2, MOD. 80 Phar Lap/DOS 3.3
(Host & Target), ACY/C 1.11.

91-15
R ‘.llll

14, SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compuler Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANS/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT - OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED ]

NSN 7540-01-280-550 . C:andard Form 298, (Rev. 2-89)

Prescribed by ANS! Std. 239-128

ﬂﬁ '3 N3 1} A R TN




Certificate Information

The following Ada implementation was tested and determined to pass Acve
1.11. Testing was completed on 29 November 1990.

Compiler Name and Version: Janus/Ada 2.2.0 Phar Lap/DOS

Host Computer System: IBM PS/2, MOD. 80 (under Phar Lap/DOS 3.3)
Target Computer System: IBM PS/2, MOD. 80 (under MS DOS 3.3)
Customer Agreement Number: 90-08-02-RRS ‘

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
901120W1.11088 is awarded to R.R. Software, Inc. This certificate expires
on 1 June 1993,

This report has been reviewed and is approved.

M Oy
- Ada Validation Facility

Steven ~, Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

/
R R el LYt Y 4o}
, Ada Validation Orgamzatlon /
,~ Director, Computer & Software Engineering Division Acesasion For
Institute for Defense Analyses ESTREITS
Alexandria VA 22311 DPIC *iB

0

Unanaormued 0
Justiy.ention. ;
|

37 .
ce _Discrivution/
Dr. John Solomond, Director Availakility Codes

Department of Defense e

Washington DC 20301 javall andfor ]

P Diat Bpscial

AN O\




AVF Control Number:AVF-VSR-436-0891
1 August 1991
90~-08~02-RRS

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 901120w1.11088
R.R. Software, Inc.
Janus/Ada 2.2.0 Phar Lap/DOS
IBM PS/2, MOD. 80 Phar Lap/DOS 3.3 => IBM PS/2 MOD. 80 MS DOS 3. 3

Prepared By:
Ada validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503



. Declaration of Conformance

Compiler Implementor : R.R. Software, Inc.
Ada Validation Facility : Wright-patterson AFB, Ohio 45433-6503
Ada Compiler Validation Capability (ACVC) Version : 1.11

Base Configuration

"Ada ‘Compiler Name : Janus/Ada Version : 2.2.0 Phar Lap/DOS
.Host Architecture: IBM PS/2, Mod. 80 Host OS & Ver.:Phar Lap/Dos 3.3
Target Archltecture. IBM PS/2, Mod.80 Target OS & Ver.: MS DOS 3.3

Implementor's Declaration

I, the undersigned, representing R.R. Softwars, Inc. have
impleménted no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler listed in this declaration. I
declare that R.R. Software, Inc. is the owner of record of the Ada
compiler listed above, and as such, is responsible for maintaining
said compiler in conformance to ANSI/MIL-STD-1815A. All
certificates and registration for Ada language compiler listed in
this declaration-shall be made only in the owner's corporate name.

/ /é 27 /757(:’
ames Sta#a Date
Vice President
R.R. Software, Inc.

0wner's beclaration

I, the undersigned, representing R.R. Software, Inc. take full
responsibility for implementation and maintenance of the Ada

- compiler listed above, and agree to the public disclosure of the
final Validation Summary Reéport. I declare that all of the Ada
language compilers listed, and their host/target performance are
in compliance with the ANSI/MIL~STD-1815A.

Tla) JL A5

Date

4 ;/

ames :A. /StewartJ

/Vice President,
R.R. Software, Inc.




;

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPORT

REFmSO e ®» & e & & e & e+ * o o o

ACVC TEST CLASSES
DEFINITION OF TERMS

IMPLEMENTATION DEPENDENCIES
WITHDRAWN TESTS . . . . . . .
INAPPLICABLE TESTS . . . . . .
TEST MODIFICATIONS . . . . . .
PROCESSING INFORMATION
TESTING ENVIRONMENT

)
® o 8 & 8 & 2 e o s * e 2 s
.

TEST EXECUTION . . .
MACRO PARAMETERS
COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

.

e e o o

¢ e o e

1-1
1-2
1-2
1-3

2-1
2-1
2-4

3-1
3~1
3-2




CHAPTER 1
INTRODUCTION

The Ada 1mp1em=ntatxon described above was tested according to the Ada
Validation Procedures [Pro90) against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organlzatlons represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 'North Beauregard Street
Alexandria VA 22311

1-1




’ ,iNTﬁODUCTiON
1.2 REFERENCES

Reference Manual for the ada Programming Lanquage, [Ada83]
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Ada -Compiler Validation Prccedures, Version 2.1, [Pro90]
Ada Joint Program Office, August 1990.

Ada Compiler Validation Capability User’s Guide, [UG89] 21 June 1989,

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:

A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this glass is ccipiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for

" this implementation are described in section 2.3.

1-2




—r

‘ . INTRODUCTION

v,

“For each Ada implementatzon, a customized test suite is .produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly- some mappl:.cable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the custcuized test suite accordmg to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada progx:ams into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
validation - consisting of the test suite, the support programs, the ACVC
Capability user’s guide and the template for the validation summary
{ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance ‘for the Ada certification system.

Office (AJPO)

Ada The part of the certification body which carries out the

Validation procedures required to establish the compliance .of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization

(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada

Implementation
Computer A functional unit, ‘consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user~designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3




) :b":\,‘

"- INTRODUCTION

Conformity

Custémer

Declaration of
LTonformence

Host Computer
System

Inapplicable
test

'IS0

‘LRM

Operating
System

"Fulfillment by a,:produét, process or service of all

requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity

is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and 1ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or

complete hardware implementations are possible.

Target

Computer
Systenm

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn
test

A computer system where the executable form of Ada programs
are executed. .

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity

testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming

language.



CHAPTER 2
IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn-by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 21 November 1990.

E28005C B28006C C34006D €35702A B41308B C43004A
C45114a C45346A C45612B C45651A C46022a B495008A
A74006A C74308a B83022B B83022H B83025B B83025D
B83026B8 €83026A €83041A B85901L ' C97116A €980038B
BA2011A CB7001A CB7001B CB7004A cCi223a BC1226A
CC1226B BC3009B BD1B02B BD1B06A AD1B0SA BD2A02A
CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2B15C BD3006A BD4008A Cp4022A *'CD4022D CD4024B
Cp4024cC CD4024D CD4031A Cp4051D Cb5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3ll6Aa CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.




' IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests)
C35706L..Y (14 tests)
C35708L..Y (14 tests)
C45241L..Y (14 tests)
C45421L..Y (14 tests)
C45524L..2Z (15 tests)

C35705L..Y (14 tests)
C35707L..Y (14 tests)
C35802L..Z (15 tests)
C45321L..Y (14 tests)
C45521L..2 (15 tests)
C45621L..Z (15 tests)

C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type SHORT INTEGER:

€35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B520C4E C55B07B B55B09D B86001V C86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG INTEGER, or
SHORT INTEGER. ‘ '

C35702A, C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT FLOAT.

€35713D and B86001Z check for a pre&efined floating-point type with a
name other than FLOAT, LONG_FLOAT, or SHORT FLOAT..

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAX MANTISSA of 48 or
greater,

C45624A checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 5., For this
implementation, MACHINE OVERFLOWS is TRUE.

C45624B checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 6. For this
implementation, MACHINE OVERFLOWS is TRUE.

D55A03E. .H (4 tests) use 31 or more levels of loop nesting which exceeds
the capacity of the compiler.

D56001B uses 65 levels of block nesting which exceeds the capacity of
the compiler.

D64005F..G (2 tests) use 10 or more levels of recursive procedure calls
nesting which exceeds the capacity of the compiler.

BB6001Y checks for a predefined fixed-point type other than DURATION.



IMPLEMENTATION DEPENDENCIES

C96005B checks for values of type DURATION’BASE that are outside the
range of DURATION. There are no such values for this implementation.

LA3004A, LA3004B, EA3004C, EA3004D, CA3004E; and CA3004F check for
pragma INLINE for procedures and functions.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2n84A, CD2AS4E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions.

AD9004A uses pragma INTERFACE for overloaded subprograms; this
implementation rejects this use due to calling conventions. (See
section 2.3.)

CDA201C instantiates Unchecked Conversion with an array type with a
non-static index constraint; this implementation does not support
Unchecked Conversion for types with non-static constraints.

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method.

Test File Operation Mode File Access Method
CE2102D CREATE IN_FILE SEQUENTIAL IO
CE2102E CREATE OUT FILE SEQUENTIAL IO
CE2102F CREATE INOUT FILE DIRECT IO
CE21021I CREATE IN_FILE DIRECT 10
CE2102J CREATE OUT FILE , DIRECT IO
CE2102N OPEN - IN FILE SEQUENTIAL IO
CE21020 RESET IN FILE SEQUENTIAL IO
CE2102P OPEN OUT FILE SEQUENTIAL IO
CE2102Q RESET OUT FILE SEQUENTIAL_IO
CE2102R OPEN INOUT FILE DIRECT IO
CE2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT I0
CE2102U RESET IN FILE DIRECT 10
CE2102V OPEN OUT _FILE DIRECT 10
CE2102W RESET OUT_FILE DIRECT IO
CE3102E CREATE IN FILE TEXT_IO
CE3102F RESET Any Mode TEXT IO
CE3102G DELETE — TEXT IO
CE31021 CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT_I0
CE3102K OPEN OUT FILE TEXT IO




IMPLEMENTATION DEPENDENCIES

‘The following 16 tests check operations on sequential, direct, and text
files when multiple internal files are associated with the same external
file and one or more are open for writing; USE ERROR is raised when this
association is attampted.

CE2107B.;E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115Aa

EE2201D uses instantiations of package SEQUENTIAL IO with unconstrained
- array types; this implementation raises USE ERROR on the attempt to
create a file of such type.

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIAL IO. This implementation does
not restrict file capacity.

ZE2401D uses instantiations of package DIRECT IO with unconstrained
array types; this implementation raises USE ERROR on the attempt to
create a file of such type. ‘

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT I0. This implementation does not
restrict file capacity.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET_PAGE LENGTH specifies a value that is inappropriate for the external
file. This implementation does not have inappropriate values for either
line length or page length.

'2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 88 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B24007A B24009A B25002A B26005A B27005A
B29001A B37106A B51001A B53003a BS5A01A B63001A
B63001B B73004B B83003B B83004B B83004C B83004D
B83004F B83030D B83EO1C B83EO1D B83EOLlE B83EOLF
C85006A €850068 €85006C €85006D C85006E B91001H
BA1001A BAl1001B BAl001C BA1010A BA1010D BA1101A
BAl101E BA3006A BA3006B BA3007B BA3008A BA3008B
Bazgégg BC2001D BC2001E BC3005B BD2B03A BD2D03A
BD

2-4




IMPLEMENTATION DEPENDENCIES

C85006A..E (5 tests) were graded passed by Test Modification as directed by
the AVO. This implementation generates more object code for these tests
than it can contain in a single compilation unit. Each of these tests was
split into five equivalent subtests.

The tests below were graded passed by Test Modification as directed by the
AVO. These tests all use one of the generic support procedures,

Length Check or Enum Check (in support files LENCHECK.ADA & ENUMCHEK.ADA),
which use the generic procedure Unchecked Conversion. This implementation
rejects instantiations of Unchecked Conversion with array types that have
non-static index ranges. The AVO ruled that since this issue was not
addressed by AI-00590, which addresses required support for

Unchecked Conversion, and since AI-00590 is considered not binding under
ACVC 1.11, the support procedures could be modified to remove the use of
Unchecked Conversion. Lines 40..43, 50, and 56..58 in LENCHECK and lines
42, 43, and 58..63 in ENUMCHEK were commented out.

CD1009A CD10091 CD1009M CD100SvV CD100SW CD1C03A
Cp1co4D CD2A21A..C CD2A22J CD2A23A..B (CD2A24A CD2A31A..C
CD2AS1A €p3014C CD3014F Cp3015C CD3015E..F CD3015H
CD3015K Cp3022A . CD4061A

BD4006A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test checks that non-static values in component and
alignment clauses are rejected; but static alignment values of 8, 16, & 32
are assumed to be supported. This implementation supports only values 1 &
2; it rejects the clauses at lines 42, 48, 58, and 63, which are not marked
as errors.

AD9001B was graded passed by Processing Modification as directed by the
AVO, This test checks that, if pragma INTERFACE is supported, no bodies
are required fcr interfaced subprograms. This implementation requires that
some foreign bodies exist, even if the subprograms are not called. This
test was processed in an environment in which 1mplementor-supp11ed foreign
bodies were present.

ADS004A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test uses a single INTERFACE pragma for several overloaded
procedure and function subprograms; this implementation does not support
the pragma in such circumstances due to the calling conventions of the
interfaced language, and thus rejects the pragma.

CDA201C was graded 1napp11cable by Evaluatlon Modification as directed by
the AVO. This test instantiates Unchecked Conversion with an array type
with a non-static index constraint; this implementation does not support
Unchecked Conversion for unconstrained types and so rejects the
instantiation. The AVO ruled that various restrictions on

Unchecked Conversion may be accepted for validation under ACVC 1.11,
because AI-00590, which addresses Unchecked Conversion, did not show an ARG
consensus at the time of ACVC 1.11’'s release.




IMPLEMENTATION DEPENDENCIES

CE2108B, CE2108D, and CE3112B were graded passed by Test Modification as
directed by the AVO. These tests, respectively, check that temporary files
that were created by (earlier-processed) CE2108a, CE2108C, and CE3112A are
‘not accessible after the completion of those tests. However, these tests
also create temporary files. This implementation gives the same names to
the temporary files in both the earlier- and later-processed tests of each
pair; thus, CE2108B, CE2108D, and CE3112B report failed, as though they
have accessed the earlier-created files. The tests were modified to remove
the code that created the (later) temporary file; these modified tests were
passed. Lines 45..64 were commented out in CE2108B and CE2108D; lines

40. .48 were commented out in CE3112B.

2-6



CHAPTER 3
PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Isaac Pentinmaki
R.R. Software, Inc.
P.0. Box 1512
Madison, WI 53701

For a point of contact for sales information about this Ada implementation
system, see:

Jim Stewart

R.R. Software, Inc.
P.0. Box 1512
Madison, WI 53701

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 Summary Of Test Results

An Ada- Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90]. -

3-1




PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All ‘tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating~point precision that exceeds the implementation’s maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system — if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and £, below).

a) Total Number of Applicable Tests 3773

b) Total Number of Withdrawn Tests 83
c) Processed Inapplicable Tests 113
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 314
g) Total Number of Tests for ACVC 1.11 4170

3.3 TEST EXECUTION

The diskettes containing the customized test suite (see section 1.3) were
taken on-site by the validation team for processing. The contents of the
diskettes were installed onto a Northgate 386 wich DOS 3.30 and then
archived for installation on the actual host computer. The files were
restored onto an IBM PS/2 Model 80 with DOS 3.30,

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation. .

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the communications link described above, and run. The results
were captured on the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:




PROCESSING INFORMATION

The options used for Janus/Ada are:

/Q - Quiet error messages ~ suppresses user prompting on errors.
Necessary for running B-Tests; otherwise every error would have
to be responded to.

/W - Warnings off - warnings were suppressed mainly because of the
many confusing warnings the validation tests produce. Many
validation tests have intentional errors (such as an expression
which always raises an exception, use of null ranges, unreachable
code, etc.). The large volume of warnings produced made it
difficult to grade the B-Tests in particular, so they were
suppressed. '

/BS -~ Brief Statistics. This was also used to cut the amount of output
produced by the compiler during compile time.

/S? - Used this option to re-direct the compiler scratch files into
a Ram disk where possible (? is replaced by a drive path),
thus speeding up the compiles.

/01 - Memory model 1 ~ this directs the compiler to use memory model 1
for the output. This model allows much more code than memory
mcdel 0, and is necessary in order to have a few large tests be
able to run.

/D - Debugging code off ~ this directs the compiler to not generate
any debugging code (generally line numbers and walkbacks). This
was also used to cut the space used by the tests.

All other options used their default values.
Then, all of the non-B-Tests were linked with the options:

/Q ~ Quiet error messages - suppresses user.prompting on errors.
Necessary for running L-Tests; otherwise every ‘error would have
to be responded to.

/T - Trim unused code - this option directs the linker to remove
unused subroutines from the result file. This can make as much
as a 30K space saving in the result file.

/B - Brief Statistics. This was also used to cut the amount of output
produced by the Linker.

/Ol - Memory model 1 - to match the compiler memory model.

All other options used their default values.

Test ouéput, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3




APPENDIX A
MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN-also listed here. These values are expressed
here as Ada string | aggregates, where "V" represents the maximum input-line

length.
Macro Parameter ° - Macro Value

$MAX IN LEN 200

$BIG_ID1 (1..v=1 => 'A’, V => 117)

$BIG_ID2 (1..V=1 => 'A’7, V => r27)

$BIG_ID3 (1..V/2 => 'A’) & '3’ &
(1..V-1-V/2 => 'A’)

$BIG ID4 | (1..V/2 => 'A") & 4" &
(1..V=1-v/2 => 'A’)

$BIG_INT LIT (1..v-3 => r0’) & "298"

$BIG REAL LIT (1..v-5 => 70’) & "690.0"

$BIG_STRING1 g (1..V/2 => ‘A7) & 1

$BIG_STRING2 ™1 og (1..V-1-V/2 => 'A’) & '1% & "

$BLANKS (1..v=20 => ' ')

$MAX LEN INT BASED LITERAL ,
"2:" & (1..V=5 => 7Q7) & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..v-7 => '0') & "F.E:"

A-1




MACRO PARAMETERS
$MAX STRING LITERAL '"’ & (1..V=2 => ‘A7) & "’

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value
$ACC_SIZE 16
SALIGNMENT 2
$COUNT_LAST 32_767

$DEFAULT MEM SIZE 65536
$DEFAULT STOR UNIT 8
$DEFAULT SYS NAME  MS_DOS2

$DELTA DOC 24#1.04E-31
_$ENTRY_ADDRESS (0, 16#40%)

$ENTRY_ADDRESS1 (0, 16#05%)

$ENTRY_ADDRESS2 (0, 16401%)

$F1ELD LAST 32_767 '

$FILE TERMINATOR -

$FIXED NAME NO_SUCH_FIXED TYPE

$FLOAT NAME NO_SUCH FLOAT TYPE
$FORM_STRING o

$F6RM_STRING2 _ CANNOT RESTRICT FILE CAPACITY

$GREATER THAN DURATION
, 300_000.0

$GREATER THAN DURATION BASE LAST
1.0E6

$GREATER THAN FLOAT BASE LAST
1.0E+40

$GREATER THAN FLOAT SAFE LARGE
1.0E38

A-2




MACRO PARAMETERS

$GREATER THAN SHORT FLOAT SAFE LARGE

1.0E308 ~
$HIGH PRIORITY 0
$ILLEGAL EXTERNAL FILE NAMEL

/NODIRECTORY,/FILENAME
$ILLEGAL EXTERNAL FILE NAME2 '

<BAD/"">
$INAPPROPRIATE__LINE_LENCi-‘:'1H
$1NAPPROPRIAT.€._PAGE_LEN(1;TH
$INCLUDE_PRAGMAL PRAGMA INCLUDE ("A28006D1.ADA")
$INCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006E1.ADA")
$INTEGER FIRST -32768
$INTEGER LAST | 32767

$INTEGER LAST PLUS 1 32768
$INTERFACE -LANGUAGE ~ MASM
S$LESS_THAN DURATION -305_000.0

$LESS_THAN DURATION BASE FIRST

SLINE_TERMINATOR ASCII.CR & ASCII.LF
$LOW_PRIORITY 0

$MACHINE_CODE_STATEMENT
NULL;

$MACHINE CODE TYPE  NO_SUCH TYPE

$MANTISSA DOC 31
$MAX DIGITS 15
$MAX_INT 2147483647
$MAX_INT PLUS 1 2147483648
$MIN INT -214783648

A-3




MACRO PARAMETERS

SNAME

$NAME LIST
$NAME_SPECIFICATIONL
$NAME SPECIFICATION2
$NAME SPECIFICATION3
$NEG_BASED INT
$NEW_MEM_SIZE
$NEW_STOR UNIT
$NEX_SYS_NAME
$PAGE_TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME

$TASK SIZE

$TASK _STORAGE SIZE
$TICK

$VARIABLE ADDRESS
$VARIABLE_ADDRESS1
$VARIABLE ADDRESS2
$YOUR PRAGMA

NO_SUCH INTEGER TYPE
MS_DOS2

D:/VALID/X2120A
D:/VALID/X2120B
D:/VALID/X3119A
164FFFF_FFFF4

65536

8

MS_DOS2

ASCII.FF

RECORD NULL; END Rgcban;
NO_SUCH_MACHINE CODE TYPE
16

512

0.01

FCNDECL.SOME_VAR' ADDRESS
FCNDECL . SOME_VAR2'ADDRESS
FCNDECL.SOME_VAR3'ADDRESS
ALL CHECKS




APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation are provided by the
customer and can be found in Appendix F, section F.9, page F-14.

B-1




COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation are provided by the customer
and can be found in Appendix F, section F.9, page F-14.

B-2



i Jlink Manual

Jlink Manual

The Janus/Ada linker is used to combine a8 main program with system and
user defined compilation uniis to create an executabls program. Only object
codg files - that s, JRL (Janus relocatable) and SRL (spacification relocatable)
files - created by ihe Janus/Ada compiller, assembler, or other compatible
products can be combined. For more information on SRL and JRL flles, see
Saction 10.1 of the compiler manual. The linker only needs to bae supplied
with the naine of the object code file for the main program, It will search disks
(including a swap disk, If desired) for the required units, It determines the
loading order of the units, and finally produces an executable program, The
linker is disk basad, so any possible sized program may be linked with JLINK
It may not be possible 1o produce an easter to use linker.

Using the Linker

The user 'only needs to type the command
JLINK [a:}prog_name

to run the linker, The disk name d: specifies the disk on which to look for the

main program. The prog_name Is the name of the object code file for tha

main program, withuut the SRL or JRL file name exignsion. The result file

Is placed Into the file with the same name as the main program object code,

and the file name extension appropriate for your system (,COM or .EXE for

‘bgu&DOS). The result file i placed on the disk where the main program is
nd.

Examples:

JLINK TESTPROG
«- Links Testproy 10 mako an exocutabla program.
JLINK B.QSORT
-- Links Q&ort (wiich will be tound on tne B: disk)
+- Into an eascutabis program

This is all of the informatlon needed 1o use the linker. More detalls about the
operation of the linker will be found on succeeding pages.

Revision 4.6




Jlink Marual

Linker Operation

. ‘The linker operates automatically. However, fo better understand the opera.
tion of the linker options (below). a brief dascription of the linker operation
Is given here. '

The following disk (drive) name detinitions are used throughout the rest of
the linker manual.

The defoult disk is the one currently logged in on yoursystem. This is the disk
name which appears in the sysiem prompt.

The source disk Is the disk which Is spacméd on the command line as the
source of the main program. Unless a different disk is specifiad on the
command line, it will be the defauit disk.

The destination disk ts the disk to which the output executable file will be
written, Unless a different disk is specified on the command line, it will be the
source disk. ’

The swap disk is a disk specified on the command line which allows a whole
set of disks to be searched by swapping each disk into a disk drive, Any disk
other than the destination disk may be usad for this purpose. There is no
swap disk unless the swap option is used.

In many cases, the default, source, and destination disks refer to the same
hard Jisk, and tha swap disk is nol needed.

There are two kinds of segments (memory areas) referred {o In this manual.
Physical segments ate the segments impased by the underlying hardware. A
logleal segment Is the segmenting imposed by the Janus/Ada compller and
assembler, Each unit is divided Into three logical seqmants - code, data, and
constant, The linker's job is 1o combine many logical segments Into the proper
number of physicai seyments. Whenever a segment Is referred 1o in the rest
of this manual, it means a logical segment, unless otherwisa noted.

The mapping between physical segments and logical segments Is specified.
by the program’s memory model. Many machines with modem architectures
allow the mapping of the many logical segmenis Into one large physical
segment. These machines require only one memory model. Other machines
(like the 8086 family) have an architacture which makes the mapping more
diffleult. The different models generate different amounts of code, fun at
different speeds, and have ditierent liniis on the size of programs.

LINK.2
Copyright 1969 R ¥ Sctwais, Inc




Jlink Manual

On the 8086 (and chips in the same family), the default memory model will
generally cause the linker to produce a COM file. This memory model, called
‘Model 0, has a maximum of 64K of code in a program. To allow the use of
more code in a program, one may use the /O1 (Model 1) option in both the
conipiler and in the linker (see below). This option causes the lnker to
produce an EXE file; the code slze is restricted then only by your operating
system and by the amount of memory available on your machine. Note that
some versions of the Janus/Ada compller are sold without the libraries to
allow the use of Model 1.

All compllation units In a given program must be compiled with the same
memory model, and the program must be linked with that same modal; the
compller and the linker enforce this nile.

The linker operates In three phases. Tha first phase loads the headers of all
of the units, and thereby determines which units are needed, This phase also
records the disks where the units are found (for later use) and creates a table
of entry points (places whare other units may access this one). Tha disks are
searched in the following order: fiist the source disk, then the default disk,
and then the swap disk uniil all of the units are found (or the linker is aboried
by the user).

The sacond phasg does not use the disks at all The table of units to load
created by the first phase is used to determine the loading order of the units.
This step is necassary due to the elaboration rules of Ada (Sae Saction 10.5
of the compiler manual), since Janus/Ada loads units in the order in which
they are to be elaboratad. The load addrass of each unit is determinad in this
step. The second phas? tries to minimize the amount of disk swapping that
will be necessary in ihe third phase.

The third phase reads in each unit, fixes up all extemnal references and
relocatable items, and writes out the resulting executable file. [External
referances are usages of ltems declared outside of the unit being linked. The
linkage Information held In an external reference is replaced by actual
machine addrasses wwhen 1t 15 "fiked up' )

If the swap option is not usad. as Is usually the case when complling from a
hard disk, the fixng up is done without any user intervention. A prompt is
Issued each tlme the swap disk needs 1o be changed, with a list of the units
which shouid be on the disk Inseried. The linker tries to be friendly about
errors in this process - It the desiynated file Is not found, it Just asks again for
- the disk to be Inserted.

iINK3

Revision 4.6




Jlink Manual

Linker Commond Line and Options

The linker command line looks like:
JLINK {D:)prog_name{/optiona}

The prog_name is the name of the object code file (SRL or JRL file) of the
main program, without the *.SRL" or ".JRL" extension, {We will refer to this
simply as an SRL flle from here on In this manual; however, evarything sald
about the inaln program’s SRL file shoukd be understood to apply if the main
program has generaled a JRL [as it would If a separate specification was
provided)). The opllonal disk name D allows the source disk to be specifiad
s3some other disk iban the dafawlt disk. The main program's SRL file should
ba found on the source disk. The main program must be a Janus/Ada
pammaterlass procedure.

Note:
No file'name extension is allowed.

In general, the name of the SRL file for the maln program corresponds to the

first eight latters of tive unit name for the main program. If that name had

already been used by some other unit, however, then the SRL flle name will

vary. This can only happen f some other unit in the same program Ifbrary

has the same first gight letters as the main program. For more information on

Janus/Ada file naming conventions, see Section 10.1 of the Janus/Ada
compiler manual.

Many users will never need any options; most that do will need only the /01
option to allow for the larger memory model, the /2 option to use hardware
floating point, the /T option to reduce the size of the executable, or occasional-
lythe/E,/L,/Q, or /S options. However, all the fellowing eptions are provided
to increase the flexibility of the linker

Chhhh  Set the starting nddress of the code within the physical code
segment 10 hhhh (hexadecimal). The physical code segment will
still be allocated from 2ero by the operating system. The physieal
code seginent can be loaded anywhere in special applications, so
this option will b used veiy rarely. The resulting program will not
work under MS.DOS.

Dhhhhi  Set the staring addiess of the data within the physical data
seginent 10 hhhh (hexadecunal). The physical data sagment will
stil! be aliocated from zero. The physical data segment allocation

LINK-4
Copyright 1989, K R Soitware, Inc




Fn

Jlink Manual

address can e changed by modifying JLIB86. This optlon will
only be used for very special applications. The resulting program
will not work under MS-DOS unless JLIBS6 is modified.

Createan EXE flle. This is assumed if the /O1 option is given, This
allows aliow 8 somewhat larger total program size if memory
model 0 is used, by using different physical segmants for the logical
constant segmeni and the logical code segment.

Usethe class n (where n is 0 or 2) floating point library. If a floating
point library of the specified class already exists in the link, then it
Is used. Othaiwise, the default floating point library is used. If this
option is not used, the class 2 library s used if any unit was
_compiled with the /F (hardware floaling point) compiler option,
or otherwise contains hardware floating point operations; and the
class 0 libraty is used otharwlse. The classas are:

0  Universal software floating point (FLOATOPS),
1 Noisupported in our Ada compilers.

2 Universal hardware floating point (FLOAT87 on the 8086
series). Worning: In some versions of Janus/Ada, the
hardwate of the 8087 chip can cause some surprising resulls
when using this opiion. Check Appendix Section L.2 in the
compiier manual to see If your version is affected.

3 Notsupparted In our Ada compilers.

This option allows the use oi different forns of floating point sup-
poit without tecompiling the program. It aiso eliminates the pos-
sibllity of mote than one iteating point library being used In a
single program (which does not work!). An error is generated if you
try to use software suppoit with units compiled with the /F optlon.

Turns on the listing option. The currant unit belng worked on is
printed, and a iable of addiesses for each unit is listed on the con-
sole. These can be used for debugging. The format of the table is:

Pack-name Code-hhih Datashhhh Const-hhhh
where hhhh !s the hax value of the first address assigned to that
unit's coxde data, or comstant segment. The order given for the
units e tiw sevend and third passes of the linker specifies the

LINK.S
' Revislon 4.6




Jlink Manual

* Mhhbh

elabotation oider of the varlous units (sée Sectlon 10.5 of the
compiler manual). .

Sei the minimum size of the physical ‘code segment plus the
physical constant seginent. The size hhihh is In paragraphs (16
byte inctements), This forces the siari of the physical data segment
to start hhhh0 (hex) tytes after the start of the physical coda
seqment. If this opiion Is used, and the physical code segment plus
the physical constant segment size excaads the minimum size, a
warning message is produced. This option is primarily useful for
programs which use the Chain procedure and wish o preserve
the physical data segment. The option essentially causes the
physical data segment to be intha same absolute lacations in each
program which uses it.

This option may only be used with the small memory model
(model V).

Use memoty model n (when nis a number between Oand 7). This
option Is usex! to specify an aliemative memory model to the small
model used by default, All units linked must be complled or
assembled with the specified memory model. The memory medels
are:

0  Small code. (64K code, 64K data, 64K constants). The
‘default mode!, and the only one supported in the C-Pak.
This model generaics a COM file, unless the /E option is
specitied. A COM file i linited to 64K total for both code
and consiants, If more Is nacessary, use.the /E opﬂon, or
medal 1.-

1 Largecode. (Unlimited code, 64K data, 64K constants). The
code skee is linited Ly avallabie memory. This model is
appropriate for langer programs. This model generaies a
EXE file. Progiams that use this model will iypleally be
about fen fo wenty percent bigger and slower than the
equivalent progiam using mode! 0.

27 Unuved.

Produce quiet ertor messages. In the normal mode of operation,
the link waits after eviy crror so that the user can s¢e the error
without {t serelling off the screen. This option suppresses those
prompls.

LINK 6

Copylig‘\l 1989, R.R Soltveaie, fix.



Rpeth

* Uhhhh

Examples:

Jlink Manual

Re-direct the iinker output o the specified path. the defaulf is the
same paih as filenane.

Use the specified path as the swap disk. The linker will abort if all
of the libraries needed in the current program are net found on
the source or default disk whan no swap disk is specified. If aswap
disk is specifled, a prompt will be Issued for the user to change the
swap disk. The linking may be aborted at any time during a swap,
The swap disk may not be the same as the destination disk. Any
other path inay be used This option Is most useful on systems
with Hmited disk capacity (1.e. systems with less than 720K per
disk).

Trim out unieachable subprograms from units that were compiled
with the conpller’s /T oplion (see Appendix Section H.1 of the
compiler manunl); this can significantly reduce the size of the
executable file; at the cost of slowing down the linking process.
Using this option invokes an extra pass, batween the first and
second linker passes, to do the requested trimming. We strongly
reconunend using this option on (at least) final versions of
programs.

Sat the slariing address of the constants within the physical
constant segment to hhhh hexadecimal. The physical constant
segiment will still be allocated from zero. The physical constant
seyment allocation address can be changed by modifying JLIBS6.
This option will only be used for very special applications. The
resuiting program will not work under MS-DOS uniess JLIBS6 is
modifled.

Produce an eXira detalied ink map for the program. This will be
left in & flle called «prog_name> LNK. where <prog_name> is
the name of the matn program. This file Is mainly for the use of
debuggers and other future tools.

JLINK B:TESTPROG/RD
»» Link Teslprog tiom the 8: disk, and put the
~ rosult on the D: disk.
JUINK C:CHAMN/SB/L
« Link Chain from the C. disk, seaich the B, disk
-« tor needed units elluwing the user {0 swap disks

LINK.7
Revision 4.6




Jlink Manuai

-- when nuaded. Put the result onto the C. disk,
- and display a listing of the link addresses.
JLINK B:SAVEDATA/MB000/F2
-- Link SaveData from the B: disk, forcing the code size
-- {0 be at lsast 8000 Hex bytes. Use floating point
- modsl #2,

Error Messages

All errors except wamings are fatal. The linker will prompt the uset after an
arror sothat the user is sure io notice the error. (These prompts may be tumed
off by the /Q option). Fatal errors abort the linker.

Some error messages mention a JRL file explicity. The ;neanlng may actually
be for a SRL file; tha error messages only mention JRL for brevity.

Warnings
Some units use Floating Point Hardware, yet & Software unit was specified

The softwaie and hardware floating point should not be mixed. If
you have a fluating poini co-procassor on your target machine, we
recommend using only hardware floating point; otherwise, use

only software flcanng point.

The Code segment I8 iarger than the minimum
(See /M option, above, for explanation)

The unit oxx is obsolete because yyyy was recompiled

it will be ignored
The unit xxxx ias an aptional body, and that body was made ob-
solete by recompiiing yyyy (one of tha units withed by o).
Ada’s rules state that xooix must be ignored unlass it is recompiled.
The linker is Just lehting you know that this happened; if you really
want to have the body of xxxx linked in, you should recompile it,
This samie message can appear as an eror If xxot is anything other
than an optional body.

Command Line Errors
These are all caused by an Inconect cornmand line.

Command Line Option Unknown

. LINK.&
Copyright 198, R.R. Sofwave. fix.



Jlink Manual

An option following a slash does not correspond to any legal linker
option.

'Disk Namw too long
The disk name In the command line may have at most one letter.

Extension 6o long

At most three fetters areallowed In a flle name extension. (This mes-
sage comes {rom our standard command line parser. In fact, the
linker does not allow any flle name exiensions)

Extensions not Allowed [n Linker
The unit name given {0 link must not have a file nama extension,

Flie Name too long

The file nanie in the commiand line should be nt most eight letters -
long. This Is no longer checlied in most versions of the linker, so
this error should not oceur,

. Garbage on end of commund line

The linker cannot understand some or all of the command line.
Make sure that the syntax of the command line matches that listed
In the section caiied "Linker Command Line and Options,” above,

lllegal Digk Name for Option
A disk name for the /R ot /S option was niot In the range A..W.

llegal Valua for Option

The value glven with an option that neads one (/F, /O) is lllegal or
out of range.

Missing Disk Name for Option )
An option requining a disk namie (R, /S) does not have one.

Missing Value for Option
A value was expected followlng an option (probably /F or /0).

Revision 4.6



N

Jlink Manual

Multipie Colons In Fiie Name
The file name listed In the cominand line may not have multiple
colons.

Multiple Periods in tlle Name

The flle name listed In the command line may not have multiple
periods. (This message comes {rom our standard command line
parser. In fact, the linker does not allow file name extensions, so no
periods are allowed) .

No File Naine Preser
No fil2 name was found on tha command line,

No Hax Number given for option

An option requiring a hexadecimal number (/C, /D, or M) does not
have ong.

No option atter siash vn command ling -

There was u slash on he coimmand line without anything following
i, ’

Paths not allowed in Linkor
The flle name In the command line may not include a path.

The Swap disk cannot be the same as the destination disk

Most operating systems do not allow the chunging of disks which
are being wrirten 10; therefore the dosunatlon disk cannot be used
as the swap dlsk.

Too raany dighs in hex number

A hex number specitied in the /C, /D, or /M options may only have
4 digits.

Generic Unit Errors

fllegal genstic instannation in xxxx
The instantiation on line number yyyy is indirectly citcular.
A unit may not instantiate & unit which instantiates the original unit,

A gencric unit cannot Instantiate a genetic unii which, directly or in.
directly, causes an instantiaticn of the first unit. This ervor can
sometimes be datermined at complie time. In the case of sepamately
compiied ganierics, nowever, It may not be detected untll link tima.

. LINK-10
Copyright 1989, LR Sofrvste, lic.




Jlink Manual

In this case, the enor message glves the name of the object code
file that was pixduced when one of the offending instantiations
was complled, as well as the line number where that instantiation
occurred,

lllegal generlc instantiation in xxxx

Paramater numbat yyyy in the instantiation on line number 2222

must not be an unconutrained type.
Certain restiictions apply to genaric actual typas if the correspond-
ing gencilc formal type is used In certain ways in the body of the
generic unit. In particular, the generic actual typa may not be elther
an unconstrained airay subtype (see Section 3.6 of the compller
manual) o1 a discriminated 1ecord subtype with no defaults for the
discriminants (see Section 3.7.2 of the compiler manual) if the cor-
responding genaric fonmal type s used in any of the following
ways. as the type of a variable daclaration; as the type of a com-
ponent declaration; or as the full declaration of a privats type. This
restriction prevenis using generics 10 create objects that naed to be
constrained but are not. This error can sometimes be determined at
complle time. In the case of separatcly complied generics, however,
it may not be detected until link time. In this case, the emor mes-
sage gives the tollowing infonmation: the name of the object code
file that was preduced when the offending instantiation was com-
plled; the parumeter nuniber 1y the instantiation; and the line num-
ber where the instantiation accurred.

Link Errors

8ad .JAL file - lilegal Data Elamen:

The JRI. file or SRL file has a bad data element. Recomplle'the ind1-
cated unit and {if li Is a specifization) any units that depend on it.

Cannot be a Main Frogram
A Main Program must be a Pararneteness Procedure.

The unit that ends up buing the maln program must be a non-
generic proceduie, with no parameters,

Cannot use a .COM fiie for this program.
The small modal progian: has 1o much code and constants to fit in
a COM tite. (M3-IXOS puts a 64K limit on the size of COM files;
larger ones will not load properly.) You should either use the
linker's /E and/or /T options if you are not alveady doing so;
decrease the stze of the units {perhaps by using the OPTIMIZE

LINK-11
Revision 4.6




Jiink Manual

. pragma); ar recompile and relink the entire program with the large
memory model (model 1).

Code Ssgment Oveifiow - Cannol be larger than 64K
You tried to link a sinall memory model program (model 0) whlch
has more than 64K of code You should either use tha linker’s /T
option If you are not already doing so; decreasa the size of the
units {perhaps by using the OPTIMIZE pragma); or recompile and
relink the entite program with the large memory model (model 1),

Compllation Units yet to bo lcaded -

{Unit List]

are not found on eithoer the source o default disks
The file(s) specified were not found on any of the disks, and are re-
quited by this program.

Constant Segmant Overtiow - Cannot be inrger than 64K

You fried 1o link a program with moie than 64K of constants.
Janus/Ada oniy allows 64K of constants, due to the architacture of
the 8086.

Data Segmaont Ovartlow - Cannot bae larger than 64K

You tried fo link a program with more than 64K of statically allo-
cated data. The maximum physical segment sizq is 64K, and the
present version of Janus/Ada doas not aliow more than one normal
physical data segment. If you get this error, you must move enough
data out of thie data seginent to allow room both for the statically al-
located data and for dynamic data, including local variables and
objects allocated on the heap. If the package BIGARRAY was sup-
plied with youi coipller, you can use it 1o mova some of your data
Into a special physical data segment.

Dependency Table Oveitiow
The linker's inicenal lable that says which units are Interdependent
has overflowed. If you get this eror message, your program is too
big for Jarus'Ada 1o Landle In one piece. Consider using the
Janus’Ada chaining libiary {CHAINLIB) to break up your program
into separate passes (CHAINLIB Is not provided with all Janus/Ada
packages).

Disk Full
The output disk was fuil.

LINK 12
Copyright 1989, R it. Softvare, k¢



Jlink Manual

Entry Point Table Ovarflow
The entry point table has overflowad. If you get this arror message,
your piogram is foo big for Janus/Ada to handle in one plece, Con.
skder using the Janus/Ada chaining library (CHAINLIB) to break
up your program Into separate passes (CHAINLIB is not provided
with all Janus/Ada packages).

Error Number incowect

The linker tried to use an unused error message, Please contact us
with detalls,

JAL file not the same on the second r=ading

This error can only occur. if you used two different swap disks on
the first and second reading of a given unit's JRL file or SRL file.

Minimum Code Option can only ba used with memory model 0
The M option is allowed only for small modal programs.

Missing Externai item

An external item was not found in tha entry point tabla. The unit
name in which the item was expected to be found is listed with the
error message. The most likely reason for this error is an Incorrect
compilation order. Another possible reason Is that the JRL file or
SRL file for the given unit has been damagad. Try recomplling the
offending unit. If that falis, then try yecompiling the entire program
{using CORDER, f you have I, to insur that the order is corract).
If both of these fail, please contact RR Software.

Not & .JRL file from the curient version of Janus/Ada

The JRL or SRL version number {in tha file) is not current, Recom-
plle the Indicated unit and (it it is a specification) any units that
depend on i, '

Not enough RAM

This message Indicates that there Is not enough avallable random
access memory in your mischine to run the linker, Janus/Ada re-
quires 640K of randoin access memory on your maching. If you
think you have 2nough memaory, but you get this message, check
whether you are running any memory resident programs; such
programs deciense the amount of avallable memory on your
machine. If you have enough memory and no memory resident
programs, please contact K.R. Softwarg. This message is usually
printed with the namie of one-of JLINK's units; that information will

LINKE-13
Revision 4.6




Jlink Manual

help our suppori staff let you know how miuch more memory you
will need t: tun the linker.

Obsoleto Units found

Some of the units that were to be linked are obsolete: ﬂ'ult is, some
of the units on which they depend have been recompiled more
recenty than they have. The oifending units were listed befora this
message came out. The appropriate unils and any-units that
depend on them should be recompiled. If you have CORDER, the
Janus/Ada cotupliation order tool, you may wish to use !t fo recom-
pile all obsolete unils.

The following compliation units could not be ioaded dus to

& mutual dependency (probably caused by Elaborate pragmas)
[Unit List)

The units iisted beiow (if any) may.also be mutually dependent.
{Unit List)

The mutual dependuncy must be removed,

The flist list of units shows a cycla of units that cannot be loaded.
The Iast unit in the list Is 1equired to be elaborated before the first
unit in the list, and each other unit in the list is required to be
elaborated before the next unit In the list. Hencs, thare is no legal
daboration order. The reason that each unit in the list Is required
to be eluborated belore another listed unit is one of the follcwing
three reasons: the unit to be loaded first is a specification and other
unit is its body; the unit to be loaded first is a spacification men.
tionad in a with clause of the other unit, or the unit to be loaded
first is a body mentioned In an ELABORATE pragma of the other
unit. The sevond list of units shows other units that were not
loadable; these may depend on the units (n the cycla, or there may
be another cyrle.

In theory, this etror can only occur If an ELABORATE pragma is
present, since otherwise the compilation order gives a proper -
claboration order. If you yet this error and you have no
ELABORATY, pragmas In yeur progiam, then one of your SRL or
JRL flies is protsatly Umnaged Recomplle your entirg program in a
proper order )

The unit xxxx 1s obsolute because yyyy was recompiled

Unlt xaexx depxends on umit ywyy, but wyy was compiled more
recenlysthan mxx. Recompile vxsx and any units that depend on

it. This satie miessage can appear as a waming if xoo is an optien-
al body.

LIMNK-14
Copyright 1989, RR Sutame, Ine




Jlink Manual

Too many Compliation Units In oné Program
One program may have only 300 compilation units. i you exceed
this limit, your program Is too big for Janus/Ada to handle in one
plece. Consider using the Janus/Ada chaining library (CHAINLIB)
fo bieak up your program into separate passes (CHAINLIB is not
provided with all Janus/Ada packagas).

Too many deletions (or /T option .
Your prograim tequires the /T option to remove {00 many proce-
dures. Reduce your use of unnesded procadures, compile soma.of
your units without the /T compiler option, or do not uss the /T op-
tion. .

Too many externals for /T option
Your program has so many external refcronces that the Janus/Ada
linker cannot keep track of all of them for the purposes of the trim-
ming done by the /T option. Reduce the number of such referances
(possibly by suppressing checks), complle some of your units
without the /T cumplier option, or do not use the /T option.

Too many generic check recoras
Your program has more direct and Indiract generic instantiations
- than Janus/Ada can handle; too much memory would be needed
to chack that the Instantiations arg all legal. Reduca your usage of
generics. )

Too many reiocations tor /T uption
The program unit being loaded has so many ralocations that the
Janus/Acda linker cannot keep track of all of them for the purposes
of the tinuning done by the /T option. Reduce the number of
relocations by compiling the offending unit with tha optimizer on,
compilit:g the unit without the /T compiler option, or do not use the
/T option. ‘

Too much Code for onv .JRL Flle

The maximum nmount cf code (including constants) in one JRL
file or SRL file »s 32000 twies The JRL file or SRL. file is probably
damaged. Recomplle the Indicated unit and (If it is a specification)
any units that dupend on it.

LINK-15
’ Ravision 4.6




Jlink Manuaj

Unit 3000 has Memory Moda! different than specifiod
All units st be compiled with the same memoty modef as that
specified, I this messaae appears with unit JLIBBS, then you ane
Rotusing the Janus/Ada lityaries for the carrect model; that Is, your
DOS seaich path is not conect

LINK 16
Copyn'ght 1989 kR Sottware, inc




APPENDIX C
APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, -which
are not a part of Appendix F, are:

package STANDARD is

LR R L B BN B R B

type INTEGER is range -32768 .. 32767;
type LONG INTEGER is range -21474838648 .. 2147483647;

type FLOAT is digits 6 range —((2.0 ** 128) - (2.0 ** 104)) ..
((2.0 ** 128) -~ (2.0 ** 104);

‘type LONG FLCAT is digits 15 range —((2.0 ** 1024) - (2.0 ** 971)) ..
((2.0 ** 1024) - (2.0 ** 971));

tyre DURATION is delta 0.00025 range -((2.0 ** 31) - 1)/4096.0 ..
((2.0 ** 31) - 1)/4096.0;

e 000

end STANDARD;

c-1




Appendix F: Implementation Dependencies

) 4 Implementation Dependencies

This appendix specifies certain system-dependant characteristics
of the Janus/Ada version 2.2.0 386 to DOS compiler.

F.1 Implementation Dependent Pragmas

In addition to the required Ada pragmas, Janus/Ada also provides
several others. Some of these pragmas have a textual range.

Such pragmas set some value of importance to the compiler,
usually a flag that may be On or Off. The value to be used by
the compiler at a given point in a program depends on the
parameter of the most recent relevant pragma in the text of the
program. For flags, if the parameter is the identifier oOn, then
the flag is on; if the parameter is the identifier Off, then the
flag is off; if no such pragma has occurred, then a default value
is used.

The range of a pragma - even a pragma that usually has a textual
range - may vary if the pragma is not inside a compllatlon unit.
This matters only if you put multiple compilation units in a
file. The following rules apply:

1) If a pragma is inside a compilation unit, it
affects only that unit.

2) If a pragma is outside a compilation unit, it
affects all following compilation units in the
compilation.

Certain required Ada pragmas, such as INLINE, would follow
different rules; however, as it turns out, Janus/Ada ignores all
pragmas that would follow different rules.

The following system-dependent pragmas are deflned by Janus/Ada.
Unless otherwise stated, they may occur anywhere that a pragma
may occur.

ALL_CHECKS Takes one of two identifiers On or Off as its
argument, and has a textual range. If the
argument is Off, then this pragma causes
suppression of arlthmetlc checking (like pragma
ARITHCHECK - see below), range checking (like
pragma RANGECHECK - see below), storage error
checking, and elaboration checking. If the
argument is On, then these checks are all
performed as usual. Note that pragma ALL_CHECKS
does not affect the status of the DEBUG pragma;
for the fastest run time code (and the worst run
time checking), both ALL CHECKS and DEBUG should

CF-1

Copyright 1990, R.R. Software, Inc. Revision 4.6




ARITHCHECK

CLEANUP

Appendix F: Implementation Dependencies

be turned Off and the pragma OPTIMIZE (Time)
should be used. Note also that ALL_CHECKS does
not affect.the status of the ENUMTAB pragma.
Combining check suppression using the pragma
ALL_CHECKS and using the pragma SUPPRESS may cause
unexpected results; it should not be done.
However, ALL_CHECKS may be combined with the
Janus/Ada pragmas ARITHCHECK and RANGECHECK;
whichever relevant pragma has occurred most
recently will determine whether a given check is
performed. ALL_CHECKS is on by default. Turning
any checks off may cause unpredictable results if
execution would have caused the corresponding
assumption to be violated. Checks should be off
only in fully debugged and tested programs. After
checks are turned off, full testing should again
be done, since any program that handles an
exception may expect results that will not occur
if no checking is done.

Takes one of the two identifiers On or Off as its
argument, ‘'and has a textual range. Where
ARITHCHECK is on, the compiler is permitted to
(and generally does) not generate checks for
situations where it is permitted to raise

‘NUMERIC_ERROR; these checks include overflow

checking and checking for division by zero.
Combining check suppression using the pragma
ARITHCHECK and using the pragma SUPPRESS may cause
unexpected results; it should not bé done.
However, ARITHCHECK may be combined with the
Janus/Ada pragma ALL_CHECKS; whichever pragma has
occurred most recently will be effective.
ARITHCHECK is on by default. Turning any checks
off may cause unpredictable results if execution
would have caused the corresponding assumptlon to
be violated. Checks should be ¢ff only in fully
debugged and tested programs. After checks are
turned off, full testing should again be done,
since any program that handles an exception may
expect results that will not occur if no checking
is done.

Takes an integer literal in the range 0 .. 3 as
its argument, and has a textual range. Using this
pragma allows the Janus/Ada run-=time system to be
less than meticulous about recovering temporary
memory space it uses., This pragma can allow for
smaller and faster code, but can be dangerous;

2.2

Copyright 1990, R.R. Software, Inc. Revision 4.6




DEBUG

ENUMTAB

Appendix F: lmplementation Dependencies

certain constructs can cause memory to be used up
very quickly. The smaller the parameter, the more
danger is permitted. A value of 3 - the default
value =-causes the run-time system to be its usual

" immaculate self. A value of 0 causes no

reclamation of temporary space. Values of 1 and 2
allow compromising between "cleanliness" and
speed. Using values other than 3 adds some risk
of your program running out of memory, especially
in loops which contain certain constructs.

Takes one of the two identifiers On or Off as its
argument, and has a textual range. This pragma
controls the generation of line number code and
procedure name code. When DEBUG is on, such code:
is generated. When DEBUG is off, no line number
code or procedure names are generated. This
information is used by the walkback which is
generated after a run-time error (e.g., an
unhandled exception). The walkback is still
generated when DEBUG is off, but the line numbers
will be incorrect, and no subprogram names will be
printed. DEBUG's initial state can be set by the
command line; if no explicit option is given, then
DEBUG is initially on. Turning DEBUG off saves
space, but causes the loss of much of Janus/Ada's
power in describing run time errors.

Notes:

DEBUG should only be turned off when the program
has no errors. The information provided on an
error when DEBUG is off is not very useful.

If DEBUG is on at the beginning of a subprogram or
package specification, then it must be on at the
end of the specification. Conversely, if DEBUG is
off at the beginning of such a specification, it
must be off at the end. If you want DEBUG to be
off for an entire compilation, then you can either
put a DEBUG pragma in the context clause of the
compilation or you can use the appropriate
compiler option.

Takes one of the two identifiers On or Off as its
argument, and has a textual range. This pragma
controls the generation of enumeration tables.
Enumeration tables are used for the attributes
IMAGE, VALUE, and WIDTH, and hence to input and
output enumeration values. The tables are

F-3
Copyright 1990, R.R. Software, Inc. . Revision 4.6




Appendix F: Implementation Dependencies

generated when ENUMTAB is on. The state of the
ENUMTAB flag is significant only at enumeration
type definitions. If this pragma is used to
prevent. generation of a type's enumeration tables,
then using the three mentioned attributes causes
an erroneous program, with unpredictable results;
‘furthermore, the type should not be used as a
generic actual discrete type, and in particular
TEXT_IO.ENUMERATION_IO should not be instantiated
for the type. If the enumeration type is not
needed for any of these purposes, the tables,
which use a lot of space, are unnecessary.
ENUMTAB is on by default.

OPTIMIZER Takes one of the identifiers On or Off, or an
integer literal, as an argument. This pragma
turns optimization on or off, either totally or
partially. It has a textual range, except that if
the global optimizer is turned on for any part of
a compilation unit, then it is on for the entire
compilation unit. If the identifier is On or Off,
then Janus/Ada's optimizers are turned totally on
or totally off, as appropriate. An integer
literal as an arguement causes optimization to be
turned partially on or off.

The following integer literals are meaningful as
an argument to this pragma:

1) Turns check elimination optimizations on.

2) Turns the basic block optimizer on.

3) Turns the global optimizer on. If this is on
anywhere in a compilation unit, it will be on
everywhere in that unit.

4) Turns peephole optimizations on.

5) Puts the optimizer in 'Space' optimization
mode (the default).

6) Puts the optimizer in 'Careful' optimization
mode. The can take much longer than 'Quick!
optimization, but will find more
optimizations.

7) Puts the compiler in 'Fastest alignment!
mode. Data objects will be aligned for the
fastest performance on the target (unless
overridden by rep. clauses). This takes more
data space.

51) Turns check elimination optimizations off.
Useful for finding uninitialized variables.
52) Turns the zasic block optimizer off.

£-4

Copyright 1990, R.R. Software, Inc. Revision 4.6




Appendix F: Implementation Dependencies

53) Turns the global optimizer off.

54) Turns peephole optimizations off.

55) Puts the optimizer in 'Time' optimization
mode.

56) Puts the optimizer in 'Quick' optimization
mode. This is faster than 'Careful'’
optimizations, and often will generate nearly
the same code.

57) Put the compiler in 'Smallest alignment’
mode. Data is only aligned. when required or
when the performance penalty is-severe.
Takes less data space.

Other integer literals will be ignored. 1In
general, this pragma should not be mixed with the
OPTIMIZE pragma, since one has a textual arange
and the other does not; this can lead to
surprising situations. However, the OPTIMIZE
pragma may .be used inside a compilation unit for
which pragma OPTIMIZER(On) has been listed before
the start of the compilation unit.

PAGE_LENGTH This pragma takes a single integer literal as its
argument. It says that a page break 'should be
added to the listing after each occurrence of the
given number of lines. The default page length is
32000, so that no page breaks are generated for
most programs. Each page starts with a header
that looks like the following:

Janus/Ada Version 2.2.0 compiling :ilg on
date at time

RANGECHECK Takes one of the two identifiers On or Off as its
argument, and has a textual range. Where
RANGECHECK is off, the compiler is permitted to
(and generally does) not generate checks for
situations where it is expected to raise
CONSTRAINT_ERROR; these checks include null
pointer checking, discriminant checking, index
checking, array length checking, and range
checking. Combining check suppression using the
pragma RANGECHECK and using the pragma SUPPRESS
may cause unexpected results; it should not be
done. However, RANGECHECK may be combined with
the Janus/Ada pragma ALL ,_CHECKS; whichever pragma
has occurred most recently will be effective.
RANGECHECK is on by default. - Turning any checks
off may cause unpredictable results if execution

F-5

Copyright 1990, R.R. Software, Inc. Revision 4.6




Appendix F: Implementation Dependencies

would have caused the corresponding assumption to
be violated. Checks should be off only in fully
debugged and tested programs. After checks are
turned off, full testing should again be done,
since any program that handles an exception may
expect results that will not occur if no checking
is done.

SYSLIB This pragma tells the compiler that the current
unit is one of the standard Janus/Ada system
libraries. It takes as a parameter an integer
literal in the range 1 .. 15; only the values 1
through 4 are currently used. For example, system
library number 2 provides floating point support.
Do not use this pragma unless you are wrltlng a
package to replace one of the standard Janus/Ada
system libraries.

VERBOSE Takes On or Off as its argument, and has a textual
range. VERBOSE controls the amount of output on
an error. If VERBOSE is on, the two lines
preceding the error are printed, with an arrow
pointing at the error. If VERBOSE is off, only
the line number is printed.

VERBOSE (Off) :

Line 16 at Position 5
*ERROR* Identifier is not defined

VERBOSE (On) :

'*ERROR* Identifier is not defined

The reason for this option is that an error
message with VERBOSE on can take a long time to be
generated, especially in a large program.
VERBOSE's initial condition can be set by the
compiler command line.

Pragma INTERFACE is supported for the language MASM. Pragma
INTERFACE_NAME can be used to specify a name other than the Ada
one as the name of the MASM function called. INTERFACE_NAME
takes two parameters, the Ada subprogram name, and a strlng
representing the MASM name for the function. Pragma :
INTERFACE_NAME is provided so that convienient Ada names can be

F-6
Copyright 1990, R.R. Software, Inc. Revision 4.6




Apperdix F: Implementation Dependencies

used as appropriate, including operator symbols, and so that
foreign language names which are not legal Ada identifiers can be
interfaced to. If pragma.INTERFACE is used in a. program,

Jbind must be used to link it, and it must be linked with the
Interface run-time.

Several required Ada pragmas may have surprising effects in
Janus/Ada. The PRIORITY pragma may only take the value 0, since
that is the only value in the range System.Priority. Specifying
any OPTIMIZE pragma turns on optimization; otherwise,
optimization is only done if specified on the compiler's command
line. The SUPPRESS praagma is ignored unless it only has one
parameter. Also, the following pragmas are always ignored:
CONTROLLED, INLINE, MEMORY_SIZE, SHARED, STORAGE_UNIT, and
SYSTEM_NAME. Pragma CONTROLLED is always ignored because
Janus/Ada does no automatic garbage collection; thus, the effect
of pragma CONTROLLED already applies to all access types. Pragma
SHARED is 31m11ar1y ignored: Janus/Ada's non-preemptive task
scheduling gives the approprlate effect to all variables. The
pragmas INLINE and.SUPPRESS (with two parameters) provide
recommendations to the compiler; as Ada allows, the
recommendations are ignored. The pragmas MEMORY_SIZE,
STORAGE_UNIT, and SYSTEM_NAME all attempt to make changes to
constants in the System package; in each case, Janus/Ada allows
only one value, so that the pragma is ignored.

¥.2 Implementation Dependent Attributes

Janus/Ada does not provide any attributes other than the required
Ada attributes.

P.3 8pecification of,the Package SYSTEM
The package System for Janus/Ada has the following definition.
package Systenm is

-- System package for Janus/Ada

-- Types to define type Address.
type Word is range 0 .. 65536;
for Word'Size use 16;
type Offset_Type is new Word:
type Address is record
Offset : Offset_Type:;
Segment : Word; -
end record;
Function "+" (Left : Address; Right : Offset_Type) Return
Address; ’

F-7
Copyright 1990, R.R. Software, Inc. ' Revision 4.6




Appendix F: Implementation Dependencies

Function "+" (Left : Offset_Type; Right : Address) Retura
Address;

Function "-" (Left : Address; Right : Offset_Type) Return
Address;

Function "-" (Left, Right : Address) Returm Offset_Type;

type Name is (MS_DOS2);
System_Name : constant Name := MS_DOS2;

Storage_Unit : constant := 8;
Memory Size : constant := 65536;
-=- Note: The actual memory size of a program is
-=- determined dynamically; this is the maximunm
-=- number of bytes in the data segment.

-- System Dependent Named Numbers:
Min_Int : constant := -2_147_483_648;
Max_ _Int : constant := 2_147_483_647;
Max_Digits : constant := 15; '
Max_Mantissa : constant := 31;
Fine_Delta : constant := 2#1.04#E-31;
-- equivalently, 4.656612873077392578125E-10
Tick : constant := 0.01; -- Some machines have less
-=- accuracy; for example, the IBM PC actually ticks
-- about every 0.06 seconds.

== Other System Dependent Declarations
subtype Priority is Integer range 0 .. 0;

. typo Byte is range 0 .. 255;
for Byte'Size use 8;

end System;

The type Byte in the System package corresponds to the &-bit
machine byte. The type Word is a 16-~bit Unsigned Integer type,
corresponding to a machine word.

F.4 Restrictions on Representation CIaﬁses

A length clause that specifies T'SIZE has the following
restrictions:

If T is a discrete type, or a fixed point type, then the
size expression can given any value between 1 and 32 bits
(subject, of course, to allowing enough bits for every
possible value). Signed and unsigned representations are
supported. ~

Copyright 1990, R.R. Software, Inc. . Revision 4.6




Appendix F: Implementation DWiu

If T is a floating point type, sizes of 32 and 64 bits are
supported (corresponding to Float and Long_Float
respectively).

If T is an array or record type, the expression must give
enough room to represent all of the components of the type
in their object representation. This can be smaller than

the default size of the type.

If T is an access type or task type, the expre551on must
give the default size for T.

A length clause that specifies T'STORAGE_SIZE for an access type
is supported.

Any integer value can be specified. STORAGE_ERROR will be raised
if the value is larger than available memory; no space will be
allocated if the value is less than or equal to zero.

A length clause that specifies T'STORAGE_SIZE for a task type T
is supported. Any integer value can be specified. Values -
smaller than 256 will be rounded up to 256 (the minimum
T'Storage_Size), as the Ada standard does not allow raising an
exception in this case.

A length clause that specifies T'SMALL for a fixed point type
must give a value (subject to the Ada restrictions) in the range

2-0 *k (-99) o 2.0 ok 99,
inclusive.

An enumeration representation clause for a type T may give any
lnteger values within the range System. Min.Int .. System.Max_Int.
If a size length clause is not given for the type, the type's
size is determined from the literals glven. (If all of the
literals fit in a byte, then Byte'Size is used; similarly for
Integer and Long_Integer).

The expression in an alignment clause in a record representation
clause must equal 1 or 2 (to specify Byte or Word alignment
respectlvely) The alignment value is respected for all object
creations unless another representation clause explicitly
overrides it. (By placing a component at a non-aligned address,
for example).

A component clause may give any qe51red storage location. The
size of the record is adjusted upward if no representation clause

am
R

Copyright 1990, R.R. Software, Inc. Revision 4.6




Appendix F: Implementation Dependencies

has been given, and more space is needed for the specified
storage location to be obeyed.

The range for specifying the bits may specify any values within
the following limitations (assuming enough bits are allowed for
any value of the subtype):

If the component type 'is a discrete or fixed point type, any
value may be specified for the lower bound. The upper bound
must satisfy the equation

UB - (LB - (LB Mod System.STORAGE_UNIT SIZE)) <= 32.

If the component type is any other type, the lower bound
must satisfy

LB Mod System.STORAGE;UNIT_SIZE = 0,
The upper bound must be
UR := LB + T'Size - 1;

Janus/Ada supports address clauses on 'ost objects. Address
clauses are notv. allowed on parameters, generic formal parameters,
and renamed objects. The address .Jiven for an object address
clause may be any legal value of tyve System.Address. It will be
interpreted as an &bsolute machine addy'ass, using the segment
part as a selector if in the protected mude. It is the user's
responsibility to ensure that the value given makes sense (i.e.,
points at mewmo:y, does not overlay other objects, etc.) No other
address clausas are supported.

P.5 Implementation Defined Names
Janus/Ada uses no imnlementation generated names.
F.6 Address Clause RExpressions

The additess given for an object address clause may be any legal

"value of tyre System.Address. It will be interpreted as an

absolute machine address, u51ng the segment part as a selector if
in the protectad mode. It is the user's responSLblllty to ensure
that the value given makes sense (i.e., points at memory, does
not overlay sther objects, etc.)

F.7 Unchecked Conversion Restrictions

We first make the fuvllowing definitions:

Copyright 1990, R.R. Software, Inc. . Revision 4.6



Appendix F: Implementation Dependencies

A type or subtype is said to be a simple type or a simple subtype
(respectively) if it is a scalar (sub)type, an access (sub)type,
a task (sub)type, or if it satlsfles the following two
"conditions:

1) If it is an array type or subtype, then it is
constrained and its index constraint is static; and

2) If it is a composite tyve or subtype, then all of its
subcomponents have a simple subtype.

A (sub)type which does not meet these conditions is called non-
simple. Discriminated records can be simple; variant records can
be simple. However, constraints which depend on discriminants
are non-simple (because they are non-static).

Janus/Ada imposes the following restriction on instantiations of
Unchecked_Conversion: for such an instantiation to be legal, both
the source actual subtype and the target actual subtype must be
simple subtypes, and they must have the same size.

ry.s8 Inplenentation Dependencies of I/0

The syntax of an external file name depends on the operating
system being used. Some external files do not really specify
disk files; these are called devices. Devices are specified by
special file names, and are treated specially by some of the I/O
routines.

The syntax of an MS-DOS 2.xx or 3.xx filename is:
[dﬁ][path]filenamej.ext]

where "d:" is an optional disk name; "path" is an optional
path consisting of dlrectory names, each followed by a
backslash; "filename" is the filename (maximum 8
characters); and ".ext" is the extension (or file type)

See your MS-DOS manual for a complete description. 1In
addition, the following special device names are recognized

STI: MS-DOS standard input. The same as Standard_Input.
Input is buffered by lines, and all MS-DOS line editing
characters may be used. Can only be read. .

STO: MS-DOS standard output. The same as Standard_Output.
Can only be written.

ERR: MS~DOS standard error. The output to this device
cannot be redirected. Can only be written.

CON: The console device. Single character input with
echoing. Due to the design of MS-D0OS, this device can
be redirected. Can be read and written.

*OF-1l

Copyright 1990, R.R. Software, Inc. Revision 4.6




Appendix F: Implementation Dependencies

AUX: The auxiliary device. Can be read or written.

LST: The list (printer) device. Can only be written.

KBD: The console input device. No character interpretatlon
is performed, and there is no character echo.’ Agaln,
the input to this device can be redirected, so it does
not always refer to the physical keyboard.

The MS-DOS device files may also be used (CON, AUX, and PRN
without colons ':'). For compatibility reasons, we do not
recommend the use of these names.

The MS-DOS 2.xx version of the I/O system will do a search
of the default search path (set by the DOS PATH command) if
the following conditions are met:

1) No disk name or path is present in the file name;
and

2) The name is not that of a device.

" Alternatively, 'you may think of the search being done if the
file name does not contain any of the characters ‘':!', '/!,
or '\'.

The default search path cannot be changed while the program
is running, as the path is copied by the Janus/Ada program
when it starts running. .

Note:
Creates will never cause a path search as they must work in
the current directory.

Upon normal completion of a program, any open external files are -
closed. Nevertheless, to provide portability, we recommend
explicitly closing any files that are used.

Sharing external files between multiple file objects causes the
corresponding external file to be opened multiple times by the
operatlng system. The effects of this are defined by your
operating system. This external file sharlng is only allowed if
all internal files associated with a single external file are
opened only for readlng (mode In_File), and no internal file is
Created. Use_Error is raised if these requirements are violated.
A Reset to a writing mode of a file already opened for reading
also raise Use_Error if the external file also is shared by
another internal file.

Binary I/0 of values of access types will give meaningless
results and should not be done. Binary I/0 of types which are

F-12 .
Copyright 1990, R.R. Software, Inc. Revision 4.6




Appendix F: Implementation Dependencies

not simple types (see definition in Section F.7, above) will
raise Use_Error when the file is opened. Such types require
speclflcatlon of the block size in the form, a capability which

is not yet supported.

The form parameter for Sequential_ IO and Direct_IO is always
expected to be the null string.

The type Count in the generic package Direct_IO is defined to
have the range 0 .. 2_147_483_647.

Ada specifies the existence of special markers called terminators
in a text file. Janus/Ada defines the line terminator to be <LF>
(line feed), with or without an additional <CR> (carriage
return). The page terminator is the <FF> (form feed) character;
if it is not preceded by a <LF>, a line terminator is also

assumed.

The file terminator is the end-of-file returned by the host
operating system. If no line and/or page terminator directly
precedes the file terminator, they are assumed. If the form "2"
is used, the <Ctrl>-Z character also represents the end-of-file.
This form is not necessary to correctly read files produced with
Janus/Ada and most other programs, but may be occasionally
necessary. The only legal forms for text files are "" (the null
string) and "2". All other forms raise USE_ERROR.

If the form is ."", the <Ctrl>-Z character is ignored on input.
The <CR> character is always ignored on input. (They will pot be
returned by Get, for instance). All other control characters are
sent directly to the user. Output of control characters does not
affect the layout that Text_ IO generates. ' In partlcular, output
of a <LF> before a' New_Page “does not suppress the New_Line caused
by the New_Page.

Oon output, the "2" form causes the end-of-file to be marked by a
<Ctrl>-Z; otherwise, no explicit end-of-file character is used.
The character pair <CR> <LF> is written to represent the line
terminator. Because <CR> is ignored on input, this is compatible
with input.

The type Text_IO.Count has the range 0 .. 32767; the type
Text_IO.Field also has the range 0 .. 32767.

I0_Exceptions.USE_ERROR is raised if something cannot be done

because of the external file system; such situations arise when
one attempts:

F-13

Copyright 1990, R.R. Software, Inc. . Revision 4.6




Appendix F: Implementation Dependencies

- to create or open an external file for writing when the
external file is already open (via a different internal
file).

- to create or open an external file when the external
file is already open for writing (via a different
internal file).

- to reset a file to a writing mode when the external
tile is already open (via a different internal file).

- to write to a full disk (Write, Close):;

- to create a file in a full directory (Create);

- to have more files open than the 0S allows (Open,
Create);

- to open a device with an illegal mode;

- to create, reset, or delete a device:;

- to create a file where a protected file (i.e., a
directory or read-only file) already exists;

- to delete a protected file;

- to use an illegal form (Open, Create); or

- to open a file for a non-simple type without specifying
the block size:

- to open a device for direct I/O.

I0_Exceptions.DEVICE_ERROR is raised if a hardware error other
than those covered by USE_ERROR occurs. These situations should
never occur, but may on rare occasions. For example,
DEVICE_ERROR is raised when:

- a file is not found in a Close or a Delete:;
- a seek error occurs on a direct Read or Write; or
- a seek error occurs on a sequential End_Of_File.

The .subtypes Standard.Positive and Standard.Natural, used by some
I/0 routines, have' the maximum value 32767.

Ne package Low_Level_IO is provided.

F.9 Rununing the compiler and linker

The Janus/Ada compiler is invoked using the following format:
JANUS [path)] filename [.ext] (/option)

where filename is an MS/D0OS file name with optlonal path {path]

(here path includes disk names), optlonal extension [.ext], and

compiler optlons {/option). 1If no path is specified, the current

disk and path is assumed. If no extension is specified, .PKG is

_assamed.

" The compiler options are:

F-14

‘Copyright 1990, R.R. Software, Inc. s ‘ Revision 4.6




Appendix F: Implementation Dependencies

B Brief error messages. The line in error is not printed
(equivalent to turning off pragma VERBOSE).

BS Brief statistics. Few compiler statistics are printed.

D Don't generate debugging code (equivalent to turning

off pracma DEBUG)

F Use in-line 8087 instructions for Floating point
operations. By default the compiler generates library
calls for floating point operations. The 8087 may be
used to execute the library calls. A floating point
support library is still required, even though this
option is used.

L Create a listing file with name filename.PRN on the
same disk as filename. The listing file will be a
listing of only the last compilation unit in a file.

Lpath Create a listing file on specified path 'path'.

Oox Object code memory model. X is 0 or 1. Memory model 0
creates faster, smaller code, but limits all code in
all units of a program to one MS-DOS segment (i.e., 64
kilobytes); Memory model 1 allows code size limited
only by your machine and operating system. See the
linker (JLINK) manual for more information. Memory
model 0 is assumed if this option is not given. The
compiler records the memory model for which each
library unit was compiled, and it will complain if any
mismatches occur. Thus, the compiler enforces that if
it is run using the /ol option, then all of the withed
units must have been compiled with the same option.

o] Quiet error messages. This option causes the compiler
not to wait for the user to interact after an error.
In the usual mode, the compiler will prompt the user
after each error to ask if the compilation should be
aborted. This option is useful if the user wants to
take a coffee break while the compiler is working,
since all user prompts are suppressed. The errors (if
any) will not stay on the screen when this option is
used; therefore, the console traffic should be sent to
the printer or to a file. Be warned that certain
syntax errors can cause the compiler to print many
error messages for each and every line in the program.
A lot of paper could be used this way! Note that the /Q

Copyright 1990, R.R. Software, Inc. ’ Revision 4.6




Rpath

Spath

Wx

Appendix F: Implementation Dependencies

option disallows disk swapping, even if the /S option
is given. '

Route the SYM, SRL, and JRL files produced by the
compiler to the Sp&leled path 'path'. The default is
the same path as filename.

Route Scratch files to specified path. This option is
useful if you have a RAM disk or if your disk does not
have much free space. The use of this option also
allows disk swapping to load package specification
(.SYM) files. Normally, after both the compiler and
gsource file disks are searched for .SYM files, an error
is produced if they are not all found. However, when
the /S option is used, the compiler disk may be removed
and replaced by a disk to search. The linker has a
similar option, which allows the development of large
programs on systems with a small disk capacity. Note
that disk swapping is not enabled by the /S option if
the /Q (quiet option) is also given. The /Q option is
intended for batch mode compiles, and its purpose
conflicts with the disk swapping. The main problea is
that when the /S option is used to put scratch files on
a RAM disk, a batch file may stop waiting for a missing
.SYM or ERROR.MSG file; such behavior would not be
appropriate when /Q is specified.

Generate information which allows trimming unused
subprograms from the code. This option tells the
compiler to generate information which can be used by
the remove subprograms from the final code. This
option increases the size of the .JRL files produced.
We recommend that it be used on reusable libraries of
code (like trig. 1libraries or stack packages) -~ that
is those compilations for which lt is likely that some
subprograms are not called.

Don't print any warning messages. For more control of
warning messages, use the following option form (Wx).

Print only warnings of level less than the specified
digit 'x'. The given value of x may.be from 1 to 9.
The more warnings you are willing to see, the higher
the number you should give.

Handle eXtra symbol table information. This option is
for the use of the JScope debugger and other tools.
This option requires large quantities of memory and
disk space, and thus should be avoided if possible.

F-16

Copyright 1990, R.R. Software, Inc. Revision 4.6



Appendix . F: Implementation Dependencies

2 Turn on optlmlzatlon. This has the same effect as if

the pragma OPTIMIZE were set to SPACE throughout your
compilation. :

The default values for the command line options are:

Error messages are verbose.

Statistics are verbose.

Debug code is generated.

Library calls are generated for floating point operations.
No listing file is generated.

Memory model 0 is used.

The compiler prompts for abort after every error.

The SYM, SRL, and JRL files is put on thé same path as the
input file.

Scratch filaes are put in the current directory.

No trimming cocde is produced.

All warnings are printed. -

Extra symbol table information is not generated.
Optimization is done ‘only where so specified by pragmas.

NXEHO WOoOCWOWW

Leading spaces are disregarded between the filename and the call
to JANUS. Spaces are otherwise not recommended on the command
line. The presence of blanks to separate the options or between
the filename and the extension will be ignored.

Examples:
JANUS test/Q/L
JANUS test.run/w4
JANUS test
JANUS test .run /B /W/L

The compiler produces a SYM (SYMbol table information) file when
a specification is compiled, and a SRL or JRL (Specification
ReLocatable or Janus Relocatable) file when a body is compiled.
To make an executable program, the appropriate SRL and JRL files
must be linked (combined) with the run-time libraries. This is
accomplished by running the Janus/Ada linker, JLINK.

The Janus/Ada linker is invoked using the following format:
JLINK [path] filename {/option}

Here "filename" is the name of the SRL or JRL file created when
the main program was compiled (without the .SRL or .JRL
exten51on) with optional path name [path] (again, the disk name
is consider part of the path here), and compiler options
{/option}. The filename usually corresponds to the first eight

F-17
Copyright 1990, R.R. Software, Inc. Revision 4.6



Appendix F: 1mplementation Dependencies

letters of the name of your main program. A path may be
specified where the files are to be found. See the linker manual
for more detailed directions. We summarize here, however, a few
of the most commonly used linking options:

E Create an EXE file. This is assumed if the /01 option is
glven. This allows allow a sllghtly larger total program
size if memory model is used. '

FO Use software floating point (the default).

F2 Use hardware (8087) floating point.

L Display lots of information about the loading process.

00 Use memory model 0 (the default); see the description of the
/0 option in the compiler, above.

01 Use memory model 1.

Q  Use quiet error messages; i.e., don't wait for the user to
interact after an error.

B Use brief statistics.

T Trim unused subprograms from the code. This option tells
the linker to remove subprograms which are never called from
the final output file. This option reduces space usage of
the final file by as much as 30K.

Examples: )
JLINK test ‘ T
JLINK test /Q/L
JLINK test/01/L/F2

Note that if you do not have a hardware floating point chip, and
if you are using memory model 0, then you generally will not need
to use any linker options.

F-18
Copyright 1990, R.R. §oftuare, Inc. Revision 4.6 ’




